
BUILDING OOREXX
BUILDING TESTING DEBUGGING PACKAGING

René Vincent Jansen 

27th International Rexx Language Symposium, Tampa 2016



BUILDING OOREXX

AGENDA

▸ Getting the code 

▸ Building 

▸ Testing 

▸ Debugging 

▸ Packaging



GETTING THE CODE



TEXT

GETTING THE CODE FROM SOURCEFORGE

▸ need: subversion (svn) client 

▸ need: cmake 

▸ need: make (or nmake on windows) 

▸ need: ncurses 

▸ https://sourceforge.net/projects/oorexx/ 

▸ here you can find where to point svn to: 

▸ svn checkout svn://svn.code.sf.net/p/oorexx/code-0/main/trunk 
oorexx-code-0

https://sourceforge.net/projects/oorexx/


CMAKE



MAKE

CMAKE

▸ modern form of autotools 

▸ a way to adapt C/C++ project builds to different platforms 

▸ performs out-of-source builds 

▸ make a build directory and cd into it 

▸ cmake path-to-source -options  

▸ The whole build procedure (all platforms) is in the file 
CmakeLists.txt



CMAKE

CMAKE EXAMPLE

mkdir -p ../build 

cd ../build 

cmake -DBUILD_DEB=1 -DOS_DIST=ubuntu1604 -DCMAKE_BUILD_TYPE=RELEASE 
$WORKSPACE 

make clean              # make sure rexx picks up the current build date 

make 



MAKE



MAKE

MAKE

▸ cmake generates makefiles 

▸ make is a build tool that (re)builds programs if the source 
is newer 

▸ you can tell it about dependencies 

▸ oldest and most standard build tool 

▸ gnu make is nearly everywhere



LINUX ARM

RASPBERRY PI NOTES

Building on the Raspberry Pi

Raspbian Wheezy
The build needs cmake, at least GNU G++ 4.8.2 and the ncurses development library
The cmake in the raspbian wheeze distribution is too old; it needs to be built from source. Download and untar the 3.5.2 source package; then run ./bootstrap && make && 
make install - this will take care of make.
The C++ compiler on Wheezy is 4.6.3, it is too old and has severe bugs in template handling. From ooRexx 5.00 on, templates are required.
sudo apt-get install gcc-4.8-base sudo apt-get install g++-4.8
Finally, for a build the ncurses development header files are required. They can be installed like this:
sudo apt-get install libcurses5-dev
After this, do a standard cmake out-of source build

Raspbian Jessie
sudo apt-get install cmake



LINUX Z/ARCH

LINUX ON THE MAINFRAME
After provisioning the virtual machine image:

sudo zypper install cmake 
sudo zypper install ncurses-devel

and do a standard out-of-source cmake build.

Note that before a sudo make install, processes started using the rexx executable from 
the bin build directory do not disappear and need to be dispatched with kill -9. After 
installing rexx, this problem goes away. Note that in some virtual images there are 
problems involving the firewall and the rxapi daemon.



WINDOWS

WINDOWS
Prerequisites
▪ Subversion client (svn) from e.g. https://sourceforge.net/projects/win32svn/
▪ Cmake 3.2.3 from http://cmake.org
▪ MS Visual Studio Express: MS Visual Community 2013 from https://www.visualstudio.com/en-us/

products/visual-studio-community-vs.aspx

Probably down the line you will have to install NSIS, Xalan and Xerces, but the above is enough to build a 
local copy and run it. The ooRexx documentation is a different issue and needs other tools.

Environment variables
This set of environment variables is suggested; match this to your local environment
set TEST_DIR=C:\Users\rvjansen\oorexxtest
set SRC_DRV=C:
set BLD_DIR=\Users\rvjansen\oorexxbuild
set REXX_BUILD_HOME=%SRC_DRV%%BLD_DIR%
set REXX_HOME=%SRC_DRV%%BLD_DIR%
call "C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" x64
set INCLUDE=%INCLUDE%;c:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A
\include;
path c:\NSIS;%REXX_BUILD_HOME%\bin;%PATH%;c:\Xalan\bin;c:\Xerces\bin;%TEST_DIR%;
%TEST_DIR%\framework;

https://sourceforge.net/projects/win32svn/
http://cmake.org/
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
http://wiki.rexxla.org/mediawiki/index.php?title=OoRexx_documentation&action=edit&redlink=1


WINDOWS

WINDOWS (CONTINUED)

Check out the code from the Subversion repository
Checked out trunk to \Users\rvjansen\oorexx with:
svn co http://svn.code.sf.net/p/oorexx/code-0/main/trunk .
(if you want to commit stuff from here, you need the svn+ssh notation and your SF password)

Configure the build with cmake
Then switch to the \Users\rvjansen\oorexxbuild directory and issued:
cmake ..\oorexx -G "NMake Makefiles”
This tells cmake to generate the makefiles and not the default Visual Studio project. Important is to 
clean out that directory every time something goes wrong, because cmake seems easy to confuse. 
Most important here is that the compiler is happy in finding the include files and libraries it needs.

Run the build
Afterwards, in that same directory,
nmake
This builds the system in the bin directory of the oorexxbuild directory. It is runnable in that state.

http://svn.code.sf.net/p/oorexx/code-0/main/trunk


TEST



TEST

TEST

▸ the ooRexx source comes with its 

▸ own testing tool (ooRexxUnit) 

▸ own testing suite 

▸ run tests: 

▸ rexx ./testOORexx.rex -s -X native_API -x socketClass



TEST

TEST SUITE

▸ ooRexxUnit is modeled on JUnit (and now xUnit) 

▸ will finish a test suite and gives results afterwards 

▸ this is useful because you have immediate insight in which 
classes pass and which classes fail 

▸ after a source code update, all supported platforms should 
be tested immediately



DEBUG



BUGS

DEBUGGING

▸ make sure to build without -DCBUILD_TYPE=Release 

▸ a build without this is non-optimized and has symbols for 
debugging 

▸ you can use gdb to set breakpoints 

▸ you can also add print statements



JENKINS



BUILDING OOREXX

JENKINS

Automate your software builds 
Distributed Master/Slave Model 
Compatibility with existing systems/protocols 
Build, deploy, test, report 
Plugins for various environments  



JENKINS

JENKINS TO Z/OS

▸ We run Jenkins from a Tomcat instance … anywhere 

▸ In this case an existing build server on Linux 

▸ Jenkins is an easy tool 

▸ Master 

▸ Slaves 

▸ Credentials 

▸ Jobs



JENKINS

JENKINS’ MAIN DASHBOARD



JENKINS

CONFIGURE A SLAVE LPAR



JENKINS

CONFIGURE A JOB



JENKINS

SPECIFY WHAT THE JOB RUNS



JENKINS

PUBLISH THE PACKAGES

▸ Install the “Publish over SSH” plugin 

▸ Use credentials from Jenkins, not from slave machine



ANY QUESTIONS? 
THANK YOU!


